Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Med Chem ; 64(24): 18010-18024, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1616926

ABSTRACT

Most enveloped viruses rely on the host cell endoplasmic reticulum (ER) quality control (QC) machinery for proper folding of glycoproteins. The key ER α-glucosidases (α-Glu) I and II of the ERQC machinery are attractive targets for developing broad-spectrum antivirals. Iminosugars based on deoxynojirimycin have been extensively studied as ER α-glucosidase inhibitors; however, other glycomimetic compounds are less established. Accordingly, we synthesized a series of N-substituted derivatives of valiolamine, the iminosugar scaffold of type 2 diabetes drug voglibose. To understand the basis for up to 100,000-fold improved inhibitory potency, we determined high-resolution crystal structures of mouse ER α-GluII in complex with valiolamine and 10 derivatives. The structures revealed extensive interactions with all four α-GluII subsites. We further showed that N-substituted valiolamines were active against dengue virus and SARS-CoV-2 in vitro. This study introduces valiolamine-based inhibitors of the ERQC machinery as candidates for developing potential broad-spectrum therapeutics against the existing and emerging viruses.


Subject(s)
Antiviral Agents/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Imino Sugars/pharmacology , Inositol/analogs & derivatives , alpha-Glucosidases/metabolism , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Chlorocebus aethiops , Crystallography, X-Ray , Dengue Virus/drug effects , Endoplasmic Reticulum/enzymology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/metabolism , Humans , Imino Sugars/chemical synthesis , Imino Sugars/metabolism , Inositol/chemical synthesis , Inositol/metabolism , Inositol/pharmacology , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , Vero Cells , alpha-Glucosidases/chemistry
2.
J Agric Food Chem ; 68(41): 11434-11448, 2020 Oct 14.
Article in English | MEDLINE | ID: covidwho-1301138

ABSTRACT

The dried fruits of Amomum tsao-ko were first revealed to have hypoglycemic effects on db/db mice at a concentration of 200 mg/kg. In order to clarify the antidiabetic constituents, 19 new flavanol-fatty alcohol hybrids, tsaokoflavanols A-S (1-19), were isolated and determined by extensive spectroscopic data and ECD calculations. Most of the compounds showed α-glucosidase and PTP1B dual inhibition, among which 1, 2, 6, 11, and 18 exhibited obvious activity against α-glucosidase with IC50 values of 5.2-9.0 µM, 20-35 times stronger than that of acarbose (IC50, 180.0 µM); meanwhile, 6, 10-12, and 19 were PTP1B/TCPTP-selective inhibitors with IC50 values of 56.4-80.4 µM, 2-4 times stronger than that of suramin sodium (IC50, 200.5 µM). Enzyme kinetics study indicated that compounds 1, 2, 6, and 11 were α-glucosidase and PTP1B mixed-type inhibitors with Ki values of 13.0, 11.7, 2.9, and 5.3 µM and 142.3, 88.9, 39.2, and 40.8 µM, respectively. Docking simulations proved the importance of hemiacetal hydroxy, the orientation of 3,4-dihydroxyphenyl, and the length of alkyl in binding with α-glucosidase and PTP1B.


Subject(s)
Amomum/chemistry , Fatty Alcohols/chemistry , Flavanones/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Plant Extracts/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Fatty Alcohols/isolation & purification , Flavanones/isolation & purification , Fruit/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Humans , Hypoglycemic Agents/isolation & purification , Plant Extracts/isolation & purification , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , alpha-Glucosidases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL